Monitoring single-cell bioenergetics via the coarsening of emulsion droplets.
نویسندگان
چکیده
Microorganisms are widely used to generate valuable products, and their efficiency is a major industrial focus. Bioreactors are typically composed of billions of cells, and available measurements only reflect the overall performance of the population. However, cells do not equally contribute, and process optimization would therefore benefit from monitoring this intrapopulation diversity. Such monitoring has so far remained difficult because of the inability to probe concentration changes at the single-cell level. Here, we unlock this limitation by taking advantage of the osmotically driven water flux between a droplet containing a living cell toward surrounding empty droplets, within a concentrated inverse emulsion. With proper formulation, excreted products are far more soluble within the continuous hydrophobic phase compared to initial nutrients (carbohydrates and salts). Fast diffusion of products induces an osmotic mismatch, which further relaxes due to slower diffusion of water through hydrophobic interfaces. By measuring droplet volume variations, we can deduce the metabolic activity down to isolated single cells. As a proof of concept, we present the first direct measurement of the maintenance energy of individual yeast cells. This method does not require any added probes and can in principle apply to any osmotically sensitive bioactivity, opening new routes for screening, and sorting large libraries of microorganisms and biomolecules.
منابع مشابه
Stabilisation of Emulsions by Trapped Species
We consider an emulsion whose droplets contain a trapped species (insoluble in the continuous phase), and study the emulsion’s stability against coarsening via Lifshitz–Slyozov dynamics (Ostwald Ripening). Extending an earlier treatment by Kabalnov et al(Colloids and Surfaces, 24 (1987), 19-32), we derive a general condition on the mean initial droplet volume which ensures stability, even when ...
متن کاملOsmotic Stabilisation of Concentrated Emulsions and Foams
In the absence of coalescence, coarsening of emulsions (and foams) is controlled by molecular diffusion of the dispersed phase species from one emulsion droplet (or foam bubble) to another. Previous studies of dilute emulsions have shown how the osmotic pressure of a trapped species within droplets can overcome the Laplace pressure differences that drive coarsening, and " osmotically stabilise ...
متن کاملQuantum dots of CdS synthesized by micro-emulsion under ultrasound: size distribution and growth kinetics
Quantum dots of CdS with hexagonal phase were prepared at relatively low temperature (60 oC) and short time by micro-emulsion (O/W) under ultrasound. This study was focused on the particle size distribution and the growth kinetics. The particle size distribution obtained from the optical absorption edge. It was relatively symmetrical with sonication time. In addition, an agreement was observed ...
متن کاملAnalyzing Benzene and Cyclohexane Emulsion Droplet Collisions on Ultramicroelectrodes.
We report the collisions of single emulsion oil droplets with extremely low dielectric constants (e.g., benzene, ε of 2.27, or cyclohexane, ε of 2.02) as studied via emulsion droplet reactor (EDR) on an ultramicroelectrode (UME). By applying appropriate potentials to the UME, we observed the electrochemical effects of single-collision signals from the bulk electrolysis of single emulsion drople...
متن کاملHigh-throughput screening of microchip-synthesized genes in programmable double-emulsion droplets.
The rapid advances in synthetic biology and biotechnology are increasingly demanding high-throughput screening technology, such as screening of the functionalities of synthetic genes for optimization of protein expression. Compartmentalization of single cells in water-in-oil (W/O) emulsion droplets allows screening of a vast number of individualized assays, and recent advances in automated micr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 19 شماره
صفحات -
تاریخ انتشار 2012